If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16S^2+52S+3
We move all terms to the left:
-(-16S^2+52S+3)=0
We get rid of parentheses
16S^2-52S-3=0
a = 16; b = -52; c = -3;
Δ = b2-4ac
Δ = -522-4·16·(-3)
Δ = 2896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2896}=\sqrt{16*181}=\sqrt{16}*\sqrt{181}=4\sqrt{181}$$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4\sqrt{181}}{2*16}=\frac{52-4\sqrt{181}}{32} $$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4\sqrt{181}}{2*16}=\frac{52+4\sqrt{181}}{32} $
| 2x+9(1/3x+8)=27 | | 11x-21=9x-35 | | 5z-3=2(z-3 | | 6t-2/3+t/5=4+(10-t)/3) | | 9+4/7x=28/3 | | m+6/m+3=m-9/m+5 | | 2/5X+1/2=3/10x+3/5 | | 11/2g+33/4=-21/4 | | P(x)=-2x^+16-24 | | 35/4x+5*8=x | | 6t-2/3+t/5=4+((10-t)/3) | | 2x+1x+2x+1x=18 | | X+2/8-3=4x/3+4 | | 11=3a | | -17.16+3.3p=-14.7+-4.9p | | 3x^2-18x+7=2x+14 | | -8(7-x)=-16 | | 130+(x-1)=180 | | -17.16+3.3p=-14.7-4.9p | | 3/5m1/4=m-1/4 | | 5/6x+8=13 | | -20-20n=-16n+20 | | 1/2x+17=-2x-13 | | -19+5x=5+2x | | -14=2(g-13)-20 | | -18-16m=15-19m | | 9x+-2=34+3x | | 4-d=15d | | (x^2-x-94)^3/4-2=6 | | 9+6x=x+24 | | 16.75=2(t+4)+2.75 | | 14-(6x-5=5(2x-1)-4x |